
1

<WriteTree.py> family tree writer

<WriteTree.py> is an extremely efficient recursive program which writes family tree data to a text
file in a format suitable for display as a transposed generation table. The program is written in
Python; the source data are stored using MySQL; the output data are written as comma-separated
values (CSV) in a text file; and all operations are undertaken in an Ubuntu (Linux) environment
running on a Windows 10 computer by means of the Microsoft Windows Subsystem for Linux
(WSL) utility. These various features and developments are summarised in four appendices:

1. WSL, Ubuntu, MySQL, and Python installation and initial setup
2. Source data preparation
3. <WriteTree.py> script
4. Sample output

R D Kingdon
March 2022; revised December 2022

2

Appendix 1. WSL, Ubuntu, MySQL, and Python installation and initial setup

WSL activation
Reference: https://ubuntu.com/tutorials/ubuntu-on-windows#1-overview

 In the Taskbar search box locate <Powershell>, select <Run as Administrator>
 Powershell: dism.exe /online /enable-feature /featurename:Microsoft-Windows-

Subsystem-Linux /all /norestart
 Powershell: dism.exe /online /enable-feature

/featurename:VirtualMachinePlatform /all /norestart
 Powershell: wsl.exe --update
 Powershell: wsl --status [ Default Version: 2 … Kernel version: 5.10.60.1]
 Exit all processes and Restart
 In Windows Settings <Find a setting> search for <Turn Windows features on or off>, and

ensure that <Windows Subsystem for Linux> is checked

Ubuntu installation and initial setup
Reference: https://ubuntu.com/tutorials/ubuntu-on-windows#1-overview

 In the Windows Store locate and download Ubuntu Linux
 From Windows Start locate and select <Ubuntu>, which installs automatically on first use,

prompting for a distinct UNIX username and password
 Ubuntu: sudo apt-get update
 Ubuntu: sudo apt-get upgrade
 Ubuntu: sudo apt update [ All packages are up to date]
 Ubuntu: lsb_release -a [ Ubuntu 20.04.5 LTS]

Accessing Linux files from Windows, and vice versa
Reference: https://www.youtube.com/watch?v=bRW5r7TK6KM

 Windows File Explorer: Ctrl-l then \\wsl$ in the address box enables direct access to
Linux files at path <\\wsl.localhost\Ubuntu\home>

 Ubuntu: cd /mnt/c/Users likewise enables direct access to Windows files
 NB Text files prepared in the Windows environment and then ported to Linux must be

reformatted using dos2unix filename (with this utility installed in Ubuntu by the
command sudo apt install dos2unix)

MySQL installation and initial setup
Reference: https://pen-y-fan.github.io/2021/08/08/How-to-install-MySQL-on-WSL-2-Ubuntu/

 Ubuntu: sudo apt install mysql-server
 Ubuntu: mysql --version [ mysql Ver 8.0.31-0ubuntu0.20.04.2 for Linux on

x86_64 ((Ubuntu))]
 Ubuntu: sudo service mysql start [ UNIX password prompt]
 Ubuntu: sudo mysql
 MySQL: CREATE DATABASE FamilyDB;
 MySQL: CREATE USER 'Genealogist'@'localhost';
 MySQL: GRANT ALL PRIVILEGES ON *.* TO 'Genealogist'@'localhost' WITH

GRANT OPTION;
 MySQL: exit [ Bye]

Python installation and initial setup
Reference: https://www.digitalocean.com/community/tutorials/how-to-install-python-3-and-set-up-
a-programming-environment-on-ubuntu-20-04-quickstart

 Implement these setup commands as required

https://ubuntu.com/tutorials/ubuntu-on-windows#1-overview
https://ubuntu.com/tutorials/ubuntu-on-windows#1-overview
https://www.youtube.com/watch?v=bRW5r7TK6KM
https://pen-y-fan.github.io/2021/08/08/How-to-install-MySQL-on-WSL-2-Ubuntu/
https://www.digitalocean.com/community/tutorials/how-to-install-python-3-and-set-up-

3

Appendix 2. Source data preparation

For testing purposes I used the same dataset (based on The Kingdon Family Charts I-VIII) as my
older Microsoft Access 2000 application, see http://www.idealectic.com/idealectic/Genealogy.htm .
This was read into Microsoft Excel 2000 in order to further refine the data model, resulting in three
worksheets, <Persons>, <Spouses>, and <Childes>:

http://www.idealectic.com/idealectic/Genealogy.htm

4

These three worksheets were then saved as CSV files <Persons.csv>, <Spouses.csv>, and
<Childes.csv>:

5

6

These three CSV files were then copied to the Ubuntu (Linux) environment where after
reformatting (using dos2unix filename) they were uploaded to the MySQL database by means of
Bash script <FamilyDBSetup.sh>:

#! /bin/bash

What: Bash script FamilyDBSetup.sh
Where: FamilyDB
When: 8 March 2022
Who: Roger Kingdon
Why: Script to create and populate FamilyDB tables
How: ./FamilyDBSetup.sh [rtn]

echo -e "SET GLOBAL local_infile = 1;" > tmp1.bat
echo -e "USE FamilyDB;\n"\
"CREATE TABLE Persons (PerID VARCHAR(50) PRIMARY KEY, Mnemonic VARCHAR(50) NOT
NULL, "\
"Surname VARCHAR(50) NOT NULL, KnownAs VARCHAR(50) NOT NULL, GivenNames
VARCHAR(50) NOT NULL, "\
"Male BOOLEAN NOT NULL, Birth VARCHAR(50) DEFAULT '', Death VARCHAR(50) DEFAULT
'');\n"\
"CREATE TABLE Spouses (PerID VARCHAR(50) NOT NULL, SpID VARCHAR(50) NOT NULL, "\
"Seq INTEGER NOT NULL, Notes VARCHAR(50) DEFAULT '');\n"\
"CREATE TABLE Childes (PerID VARCHAR(50) NOT NULL, ChID VARCHAR(50) NOT NULL,
"\
"Seq INTEGER NOT NULL, Notes VARCHAR(50) DEFAULT '');\n"\
"LOAD DATA LOCAL INFILE 'Persons.csv' INTO TABLE Persons FIELDS TERMINATED BY
',';\n"\
"LOAD DATA LOCAL INFILE 'Spouses.csv' INTO TABLE Spouses FIELDS TERMINATED BY
',';\n"\
"LOAD DATA LOCAL INFILE 'Childes.csv' INTO TABLE Childes FIELDS TERMINATED BY
',';"\
> tmp2.bat
mysql --local_infile=1 -u Genealogist < tmp1.bat
mysql --local_infile=1 -u Genealogist < tmp2.bat
rm tmp*.bat

7

Appendix 3. <WriteTree.py> script

#! /usr/bin/python3

What: Python script WriteTree.py
Where: FamilyDB
When: 8 March 2022
Who: Roger Kingdon
Why: Writes family tree for nominated person to nominated output file
How: Specify user-defined parameters; ./WriteTree.py [rtn]

User-defined parameters
blnTree = True or False generates family tree headed by an ancestor or a
descendant respectively
strHead is the head person ID (e.g. "Kingdon01" or "Kingdon06.1.2.2.2" for
blnTree = True or False respectively)
strFile is the output file name

blnTree = True
strHead = "Kingdon01"
strFile = "Family.txt"

End of user-defined parameters

Spouses: Returns a text string naming nominated person and their spouse(s)

def Spouses(strID):
 strQ = "SELECT * FROM Persons WHERE Persons.PerID='" + strID + "'"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strS = "[" + strR[1] + "] " + strR[4] + " " + strR[2]
 strB = strR[6]
 strD = strR[7]
 blnBD = False
 if (strB != ""):
 strB = strB[-4:]
 blnBD = True
 if (strD != ""):
 strD = strD[-4:]
 blnBD = True
 if (blnBD):
 strS = strS + " (" + strB + "-" + strD + ")"

 strQ = "SELECT Persons.*, Spouses.Seq FROM Spouses INNER JOIN Persons ON
Spouses.SpID = Persons.PerID WHERE Spouses.PerID='" + strID + "' ORDER BY
Spouses.Seq"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strS = strS + " m" + str(strR[8]) + " [" + strR[1] + "] " + strR[4] + " " +
strR[2]
 strB = strR[6]
 strD = strR[7]
 blnBD = False
 if (strB != ""):
 strB = strB[-4:]
 blnBD = True
 if (strD != ""):
 strD = strD[-4:]
 blnBD = True
 if (blnBD):

8

 strS = strS + " (" + strB + "-" + strD + ")"

 return strS

End of Spouses

WriteGens: Recursively writes related generations of nominated person to
nominated output file

def WriteGens(strGen0, strID0):
 strGen = strGen0 + ","
 if (blnTree):
 strQ = "SELECT Childes.ChID FROM Childes WHERE Childes.PerID='" + strID0 +
"' ORDER BY Childes.Seq"
 else:
 strQ = "SELECT Childes.PerID FROM Childes INNER JOIN Persons ON
Childes.PerID = Persons.PerID WHERE Childes.ChID='" + strID0 + "' ORDER BY
Persons.Male DESC"
 cursor.execute(strQ)
 strRT = cursor.fetchall()
 for strR in strRT:
 strID = strR[0]
 txtOut.write(strGen + Spouses(strID) + "\n")
 WriteGens(strGen, strID)

End of WriteGens

Start of WriteTree.py execution

from mysql.connector import connect
connection = connect(host="localhost", user="Genealogist", database="FamilyDB")
cursor = connection.cursor()
txtOut = open(strFile, "a+")

strGen = ""
strQ = "SELECT PerID FROM Persons WHERE Persons.PerID='" + strHead + "'"
cursor.execute(strQ)
strRT = cursor.fetchall()
for strR in strRT:
 strID = strR[0]
 if (strID == strHead):
 txtOut.write(strGen + Spouses(strID) + "\n")
 WriteGens(strGen, strID)

txtOut.close()
cursor.close()
connection.close()

End of WriteTree.py execution

9

Appendix 4. Sample output

Running Python script <WriteTree.py> generates output file <Family.txt>:

10

Once it has been copied to the Windows environment <Family.txt> may be opened in Microsoft
Excel (with comma-delimited fields) to display the family tree as a transposed generation table:

This is the required output.

